查看“BiLSTM”的源代码
←
BiLSTM
跳转至:
导航
、
搜索
因为以下原因,您没有权限编辑本页:
您所请求的操作仅限于该用户组的用户使用:
用户
您可以查看与复制此页面的源代码。
{{4}} '''情感分类任务''' 自然语言处理中情感分类任务是对给定文本进行情感倾向分类的任务,粗略来看可以认为其是分类任务中的一类。对于情感分类任务,目前通常的做法是先对词或者短语进行表示,再通过某种组合方式把句子中词的表示组合成句子的表示。最后,利用句子的表示对句子进行情感分类。 举一个对句子进行褒贬二分类的例子。 句子:我爱赛尔 情感标签:褒义 '''什么是[[LSTM]]和[[BiLSTM]]?''' LSTM的全称是Long Short-Term Memory,它是[[RNN]](Recurrent Neural Network)的一种。LSTM由于其设计的特点,非常适合用于对时序数据的建模,如文本数据。BiLSTM是Bi-directional Long Short-Term Memory的缩写,是由前向LSTM与后向LSTM组合而成。两者在自然语言处理任务中都常被用来建模上下文信息。 '''为什么使用[[LSTM]]与[[BiLSTM]]?''' 将词的表示组合成句子的表示,可以采用相加的方法,即将所有词的表示进行加和,或者取平均等方法,但是这些方法没有考虑到词语在句子中前后顺序。如句子“我不觉得他好”。“不”字是对后面“好”的否定,即该句子的情感极性是贬义。使用LSTM模型可以更好的捕捉到较长距离的依赖关系。因为LSTM通过训练过程可以学到记忆哪些信息和遗忘哪些信息。 但是利用LSTM对句子进行建模还存在一个问题:无法编码从后到前的信息。在更细粒度的分类时,如对于强程度的褒义、弱程度的褒义、中性、弱程度的贬义、强程度的贬义的五分类任务需要注意情感词、程度词、否定词之间的交互。举一个例子,“这个餐厅脏得不行,没有隔壁好”,这里的“不行”是对“脏”的程度的一种修饰,通过BiLSTM可以更好的捕捉双向的语义依赖。 ---- 来源:[https://www.jiqizhixin.com/articles/2018-10-24-13 BiLSTM介绍及代码实现]
该页面使用的模板:
模板:4
(
查看源代码
)
返回至
BiLSTM
。
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
首页
社区主页
新闻动态
最近更改
随机页面
帮助
华师附中老三届
站群链接
社友网(sn)
产品百科(cpwiki)
产品与服务(sn)
社区支持农业(sn)
工具
链入页面
相关更改
特殊页面
页面信息