更改
无编辑摘要
谷歌大脑自2011年成立起开展了面向科学研究和谷歌产品开发的大规模深度学习应用研究,其早期工作即是TensorFlow的前身DistBelief [1] 。DistBelief的功能是构建各尺度下的神经网络分布式学习和交互系统,也被称为“第一代机器学习系统” [1] 。DistBelief在谷歌和Alphabet旗下其它公司的产品开发中被改进和广泛使用 [3-4] 。2015年11月,在DistBelief的基础上,谷歌大脑完成了对“第二代机器学习系统”TensorFlow的开发并对代码开源。相比于前作,TensorFlow在性能上有显著改进、构架灵活性和可移植性也得到增强 [1] 。此后TensorFlow快速发展,截至稳定API版本1.12,已拥有包含各类开发和研究项目的完整生态系统。在2018年4月的TensorFlow开发者峰会中,有21个TensorFlow有关主题得到展示 [2] 。
安装
语言与系统支持
TensorFlow支持多种客户端语言下的安装和运行。截至版本1.12.0,绑定完成并支持版本兼容运行的语言为C和Python,其它(试验性)绑定完成的语言为JavaScript、C++、Java、Go和Swift,依然处于开发阶段的包括C#、Haskell、Julia、Ruby、Rust和Scala [5] 。
Python
TensorFlow提供Python语言下的四个不同版本:CPU版本(tensorflow)、包含GPU加速的版本(tensorflow-gpu),以及它们的每日编译版本(tf-nightly、tf-nightly-gpu)。TensorFlow的Python版本支持
Ubuntu 16.04、Windows 7、macOS 10.12.6 Sierra、Raspbian 9.0及对应的更高版本,其中macOS版不包含GPU加速 [6] 。安装Python版TensorFlow可以使用模块管理工具pip/pip3 [7] 或anaconda并在终端直接运行。
pip install tensorflow
conda install -c conda-forge tensorflow
此外Python版TensorFlow也可以使用Docker安装 [8] :
docker pull tensorflow/tensorflow:latest
# 可用的tag包括latest、nightly、version等
# docker镜像文件:https://hub.docker.com/r/tensorflow/tensorflow/tags/
docker run -it -p 8888:8888 tensorflow/tensorflow:latest
# dock下运行jupyter notebook
docker run -it tensorflow/tensorflow bash
# 启用编译了tensorflow的bash环境
来源:https://baike.baidu.com/item/TensorFlow/18828108?fr=aladdin